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ABSTRACT

This article studies the existence of T-periodic solutions for systems of

nonlinear second order ordinary differential equations. the type

S+ V1(x) - fV(t). Here, x : R C RN , v e c2(N,)---9nd f ., : R + RN  is a

given T-periodic forcing term (T > 0 is given) ->Assumint" V to be

superquadratic, it is shown that this system possesses infinitely many T-

periodic solutions. The proof of this result rests on showing that certain

homotopy groups of level sets of the functional associated with the system are
", -t4 . I

not trivial. Some more general results concerning systems of the type,

f + It,x) - 4-Qare also presented.here.
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sIxIri s AD ZXPLANATION

Systms of the type I + VI(x) - 0 (where x - x(t) e3t and

V C (a a)) describe the motion of a mechanical system consisting of a

finite number of points x1 ... ,xa3  with a potential given by the function

V(xI#...,x). In the presence of external forces, the system to be studied

is

) + V'(x) - f(t) 

Assuming that the forcing tern f(t) is T-periodic in time, one would like to

know whether (M) has a T-periodic response. Under the assumption that V has

sup rquadratic growth as JxJ + + -, it is shown in this paper that the

answer is affirmativel In fact, M') has infinitely many T-periodic vibrations

induced by the forcing tern f.

I.1

istributl1on

A . a. . . . .. . .

The responsibility for the wording and views expressed in this descriptive
samwry lies with ME, and not with the authors of this report.
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EXISTENCE OF FORCED OSCILLATIONS FOR
SONE NONTINEAR DIFFERENTIAL EQUATIONS

Abbas Bahri and Henri Berestycki

1. INTRODUCTION AND MAIN RESULTS

This paper is concerned with the existence of T-periodic solutions (T e a, T > 0

given) for the following second order system of nonlinear ordinary differential equations:

(1.1) R + V'(x) - f(t)

Here, - - x a 3- x , V e C(K R), V'(X) is the gradient of V and
dt2

f z R Nt is some given T-periodic "forcing" term. The main purpose of this paper is to

show that if V(x) is superquadratic as lxi + + -, then (1.1) possesses infinitely many

T-periodic solutions ("nonlinear forced oscillations").

More precisely, we assume that V satisfies the following condition:

0 < V(x) 4 6 V'x*x for all x 3'R, e xi ) R
(V)

with 0 < e 2 for some R > 0

(Here, VO(x)*x denotes the scalar product in aN). From v) via an integration it is

easily derived that V is superquadratic at infinityl that is, V satisfies:

(1.2) a IxlPl - b C V(x), V x e RN

1 p + lI

with p + I - -> 2 and a,b > 0 being constants.

Let us now state our main result.

*CNRB and Facult des Sciences, Universiti de Tunis, Tunisia

**CNRS-Universiti Paris VI, Analyse Numerique, 4 place Jussieu, 75230 Paris Cedex 05,
France. Part of this research was done while the author was visiting the Mathematics
Research Center, University of Wisconsin-Madison.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.



Theorem 1. Suppose that V C C2 (30,3 ) satisfies condition (V). Then, for any gives

f 6 L2(MI) which is T-periodic, the system (1.1) admits infinitely many T-periodic

solutions().

The proof of this result will take up sections 2 to 6. In Section 7, the same method

is applied to obtain the existence of periodic solutions for more general non autonomous

systems of the type

(1.3) 9 + v;(t,x) - 0

There is a vast literature devoted to the subject of nonlinear oscillations in systems

like (1.1) or (1.3). However, in the case of a superquadratio V, for a systeM (1.1),

even the existence of at least one periodic solution for any given periodic f was an open

problem. Let us recall some previous works in this domain.

Firstly, in the case of a single scalar equation (N - 1)s

(1.4) 9 + g(t,x) - 0 (x(t) .3)

quite general results on the existence of periodic solutions have been obtained by Hartman

114] and Jacobovitz (151 (by using the Poincar&-Birkhoff Theorem). For earlier works in

this case V - 1, the reader is also referred to Cesari (10). Lhrmann (11], Hicheletti

[171, VuBik and Lovicar (13], Nehari (18] and WolkowLski [26] (See also the book by S.

Fuhik [12, Chapter 361 which mentions the open problem of extending the results from scalar

equations to systems).

For systems, when )o 2, existence of free oscillations in the autonomous system

(1.5) 9 + V'(x) - 0

(i.e. f - 0 in (1.1)) have been established for V e C 1(3) satisfying condition (V)

by Benl (71 and Rabinowitz [20, 231. The methods they use rely on the autonomous

character of (1.5) (or equivalently, on the 8
1
-invariance of the associated functional -

eA eaker version of this result was announced in our Note (51 where an additional
assumption was imposed on Vo in particular V was restricted to have at most polynomial
growth at infinity.
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ase below) and do not apply readily for a forced system like (1.1). As a first step in the

proof of Theorem 1, ve ill derive the result concerning free oscillations by a new and

somewhat sapler proof(')*

The present paper is, in a sense, a continuation of (6]. There, ve studied the

existence of forced oscillations for Hamiltonian systems of the type

- -~p (x,p) + fl(t)
1.,6) ,

p = jx (x~p) + f 2 (t)•

23a 2232
In (1.6), a - (Zp) I R + RIM, a(.) e C2(t3,R)l (f 1 1 f 2 ) S R + R 2 is given, of class

C1 
and T-periodic. Zn [6, a was assumed to satisfy the same condition as (V) (with

respect to the veriable a - (x,p)). H was furthermore required to verify:

alslo - b 4 H(s) 4 aIjzi
q+1 + b' V a e 6N ,

(1.7) with

1 < p 4 q < 2p + I and a,b,a,b' > 0

Under theme conditions, vs derived in [6) the existence of infinitely many T-periodic

solutions of (1.6).

ov (1.1) is but a particular case of a Hamiltonian system like (1.6), of special

importance in mechanics. Indeed, (1.1) corresponds to a separable Hamiltonien

(1.3) H(x,p) .J P12 + V(x)

and f -f - fY" Theorem 1, however, is not contained in the results of (61. Firstly,

from 1.7) one as that the Hamiltonian H corresponding to (1.1) is not superquadratic

in both variables x and p(2).* Furthermore, it should be emphasixed that on the contrary

of the results of [61 about 1.6), no additional aesumption to (V) (e.g. like (1.7)) is

being imposed here on V.

(" very recently, and independently, Rabinowits [24) has proved a weaker version of

Theorem I under an additional growth restriction on V. The approach used in (241 is
different from albeit not unrelated to our@.

(2 )gzistenoe results for the system (1.6) that would contain both the case of a

suporquadretio H and 1.6) are still by and large open.

-3-



The structure of the proof of Theorem I parallel* the ideas we developed in [6). but

the framework and, chiefly, some crucial estimates and the way these are established are

quite different for the two problems. Therefore, we have separated the study of (1-1) from

the results concerning (10.6). We shall nevertheless use here a few results from (6)

without repeating the proofs. The methods of the present paper are also to be compared

with the ones we used in [3, 4] to study some superlinear elliptic partial differential

equations(-

in this paper, as in (6], we will use the recent work of A. Bahri [1, 21 in Korse

theory which concerns the relationship between critical points of a functional and homotopy

groups of its level sets. In Section 2 we state in an abstract setting and recall the

proof of the precise result that will be used in the sequel.

To prove Theorem 1, we first construct in Section 3 a sequence of critical values

CO M for the autonomous system (1.5). The level sets of the functional associated

with (1.5) corresponding to the numbers c k are then shown to have some topological

property which, in smo" sense, is stable under perturbations. We also require a sharp

estimate from below on the growth of the ck  as k * +. This is obtained by carefully

analysing in Section 4 a certain autonomous equation that serves for comparison purposes.

We conclude in Section 6 by using a perturbation argument on the autonomous functional

which allows us to find periodic solutions of (1.1).

in the last section, we study more general perturbations from an autonomous system of

the type (1.3). There, we derive some results about the existence of infinitely many

periodic solutions of (1.3) which extend Theorem 1.

This paper is thus organized as follows:

1. introduction and main results.

2. A theorem on the homotopy groups of level sets of a functional.

3. Critical values and periodic solutions in the autonomous case.

(1)Actually, the methods of the present paper could also be used to slightly improve the
results of (3, 41.

-4-
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4. A detailed study of some autonomous equation.

5. An estimate from below on the growth of the critical values.

6. Existence of forced oscillations.

7. More general forced systems.

Acknowledqment. The authors are much thankful to Haim Brezis, Ivar Ekeland and Paul

Rabinowits for many valuable discussions on this problem and on related topics.

2. A THEOREM ON THE NONOTOPY GROUPS OF LEVEL SETS OF A FUNCTIONAL

In the course of the proof of Theorem I as well as in the last section, we will use a

result concerning the relationship between certain homotopy groups of level sets of a

functional and its critical points. The main idea is to adapt a classical theorem from

Morse theory to situations which may be "degenerateO. This adaptation relies on an

approximation procedure of Marino and Prodi [16]. In this section we state in an abstract

setting and recall the proof of the precise theorem that will be required thereafter. This

result is due to A Bahri (1, 21 and we refer the reader to (1,2] for more general

properties in this direction.

We start by recalling the following fact from Morse theory. Let M be a smooth

Hilbert manifold. Let f e C 2(M,R) satisfy the Palais-Smale condition (see below); we

denote M - (x e x, f(x) ) a). Let b < a be two given reals which are regular valuesa

of f. Assume that the set Za(f) - x eM, b C f(x) - a, f'(x) - 0) is finite and that
b

v x e z a(f), x is a nondegenerate critical point of f (i.e. the Hessian form f"(x)
b

is definite). Recall that the ooindex of x is the maximum dimension of a subspace of

TM on which fO(x) is positive definite. Then, one has the following result (Theorem

7.3 in J. T. Schwartz 125]).

Proposition 2.1. In addition to the above hypotheses, assume that for any x e Zb(F), the

coindex of x is larger than n. Then W(1.bM.) - 0.

Is --- Now-5-
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Here W(N1 ,X a ) denotes the relative homotopy group of the pair %-M'a

n e  
- V\(O). From now on, let N - H be a finite dimensional Hilbert space. Let

f 6 C2(H,) and assume that f satisfies the following Palais-Smale condition.

For any sequence (x C H such that fx

(P.S)I is bounded and fl(x ) + 0, there exists

a convergent subsequence from (x ).

We denote Za(f) - {x e a, f(x) = 0, f(x) I a) and [f] = {x e HI f(x) ) a). From the

a

previous proposition we derive:

Proposition 2.2. Lot f e C 2(H,R) verify condition (P.S)1 . Suppose that for some

regular value of f, a e 3, Za(f) is finite and that for any x e z a(f, x in non-

degenerate and ha coindex larger than n. (That is, f"(x) has at least n + 1 positive

eigenvalues, counting multiplicities, and fV(x) does not have 0 as an eigenvalue).

Then, t([f]a p )  - 0 V A 4 n - 1, # e U, v P e af)a-

Here, w ( If] arp) denotes the (absolute) homotopy group of order I of Ila with

base point p. To prove this proposition, we require the following well known lem. ("non-

critical neck principle").

Lemm 2.1. Let f e C I(H,R) verify condition (P.S) 1 . Let b e R be such that f has no

critical values in (--,b]. Then, [f
1
b is a deformation retract of N.

Proof of Lamma 2.1. Firstly, by (P.S)1, there exists b, > b such that f has no

critical values in (--,bl. Let p : H + R be a locally Lipschitz fnction such that

0 4 p "< 1, p 31I on the set x e Hi f(x) 4 b} and P i 0 on [£] (Such a functionb! I

is eastly constructed explicitly see e.g. Rabinowitz (221). Lt v denote a "pseudo-
bI

gradient vector field* for f on the set If) ux e H; f(x) C b1 }. That is,

v s [f) * M is a locally Lipschitz mapping satisfying:

<f(x), v(x)> ;0 If, (x) 12

*v(x)I 1 21f'(x) I

-6-



for al x i It) where < , > and I I denote the scalar product and norm in R.

The existence of such a vector field under the assumptions of Loma 2.1 is classical (ws

* e.g. 1223).

Consider the initial problem

(2.1) An.. PM t) '1(0,x) - x

(in - itft,x)). Timing condition (P.S)1 it is easily verified that (2.1) has a unique

solution f(ttx) defined for all t e R and xt e H, and that for each t e R,

xt + i(t.r) is a homeomorphisat H + R. Clearly, if xt e [fjbitte

Amos) ft x v t e. ione also has,

(2.2) f~n)- PMit (Mn)V00 n) ,
(22)dt lv(t) 12  4 (t)~

flence, the function t + f (w(t,x) ) is nondecreasing. if f ( n(t,x) ) ( b for moms t )o 0,

then f(n(*,x)) 4 b whence P(Mts,x)) - 1 for all a e E0,ti- in this came, therefore,

(2.2) implies

f (i(t'x)) - fx) A.
4

Denote c-msx(cm0 for c e aL and let

r(t,x) - it(t(b - f(x)) ,X1. t e [0,1], x e H

Then, r 3 10,1) xt H + H is continuous, r(t,%) - I(0,x) - xt for all 3g e I)b

r(0,z) - xt, V xt e 4, and, lastly, r(1,x) e If)~ b# it x H. Thus, If3b is a

deformation retract of H.

Proof of Proposition 2.2. Let b e a, b < a be much that f has no critical values in

1-0,b]. Since Efbis a retract of H, one ham

(2.3) W t ((fib-P) - 0'v x* v p e if'

By Proposition 2.1, one knows that

(2.4) IFI(IffI btIf I a ) 0, view6 *, Ze(n

-7-
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(2_ _5) . .... .V.. ..... . ... .. . . . .. ..( f)D ) IV( fj #I ja

For p e mat one has the exact sequencez

(2.5) ... " Il[fb' fa) £ s(fa'P wt[[f]D.,P) [~'fa .

Using (2.3) and (2.4), the exact sequence (2.) yields

(2.6) 0 'I [fa p ) * 0, V z e U*, t c n - 1

The proof of Proposition 2.2 is thereby complete.

The setting of Proposition 2.2 is "nondegenerate" in the sense of Morse theory. That

is, Za(f) is finite and any x Za (f) is assumed to be nondegenerate. The main result

of this section is the following theorem (A. Bahri [1, 2)) which extends Proposition 2.2 to

situations which may be degenerate in the above sense.

Theorem 2. Let H be a finite dimensional Hilbert space. Let f e C 2(H,) be a

functional satisfying condition (P.S)I . Assume that a is not a critical value of f and

that Za(f) - {x e Hi f(x) 4 a, f'(x) - 0) is compact. Suppose furthermore that for any

x e za(f), there exists a subspace Hx C H such that dim Hx > n and f"(x) is a

positive definite bilinear form on Hx (i.e. f"(x) has at least n + I positive

eigenvalues). Then,

LUC[aaP ) - 0 v I e *, 1 4 n - 1, v p e [f] a

The proof of Theorem 2 rests on the following approximation result of Marino and Prodi

(16] (see also Proposition 6.2 in [6]).

Proposition 2.3. Let 0 be a C2  open subset of some Hilbert space V and let

S C2 (9,R). Assume that #' is a Fredholm operator (hence of null index) on the

critical set z(#) - (x e II #'(x) - 0). Lastly, suppose that * verifies the condition

(P.S)1  and that Z(*) is compact. Then, for any CO > 0 and n > 0, there exists

2e C (0,R) verifying (P.S)1  with the following properties.

i) #(u) - #(u) if distance{u,Z(*)} )

ii) I*(u) - #(u)I, I*'(u) - *'(u)I, Iij'(u) - *"(u) C 9,, V u e n

iii) The critical points of # (if any) are in finite number and nondegenerate.

;Remark 2.1. This result is proved in (161. The only modification with respect to the

statement in Mirino-Prodi [16] concerns property ii) where we have added the requirement

-8-



P(u) - '*(u)U 4 %. However, an inspection of the proof of [161 readily shows that this

condition can be fulfilled as well by the very same construction.

Proof of Theorem 2. For x e H, ra e a, r, > 0 and A H we denote

B(xrr) - {y e M1 ly - x < r), and N a(A) - {x e H; distance{xA) < a). Firstly, let us

remark that since H is finite dimensional, there exists c > 0 such thatK

(2.7) <f"(x)h,h p t IhI
2  

V h e H .x x

Since f is of class C
2
, there exists a ball B(x,rx ) centered at x of radius

r > 0 such thatx

(2.8) <f*(y)h,h> ) 2
- 

Ihl
2  

V h 8 Hx , V y e B(x,rx )

Let X1,... X e z af) be such that B(xr xI),...,B(x r ) form a covering of Za(f).

Let 11 1 0 be such that

N (Zaf) C U B(xirx

Let us now apply Proposition 2.3 with X- H, * - f, and 0 - {x e Hi f(x) < a). Since

a is not a critical value of f and Z a(f) is compact, n is a C
2
-open subset of H

and there exists n 2 such that distance x, za(f)} < 11 implies f(x) < a.

Let - min{8 1,1 2 } > 0. Lastly, we choose to > 0 such that

(2.9) to 4 1 ....C C
4 p

and

(2.10) CO < a - eNmax z )f(x)

Then, by Proposition 2.3, there exists * e C
2

(,1,R) verifying i)-iii). Let g(x) - 44x)

if x e 0 and g(x) - f(x) if f(x) ) a. Noticing that there is some c > 0 such that

#(x) - f(x) for any x e A with f(x) ) a - C, it is readily seen that g e C 2(H, R).

Furthermore, by i), ii) and (2.10) one has 1g]a - Ilia"

Since Za(g) C N n(za(f)), for any y e 2a(g) there exists j e [1,...,p) such that

y e B(x,r x), with x- xj. Hence, using (2.8) and the fact that

lf(y) - -(ty) I Cx

one obtains

-9-



<g"(y)h,h> - 1h1 V he H
4x

Therefore, as din Hx > n, the coindex of y is larger than n, for all y e Z a(). By

Proposition 2.2 one then has I (La,4) - 0, £ U, £ C n - 1, V p 6 [9 Je

Since [gla " (ffap the proof of Theorem 2 is thereby complete.

Remark 2.2. The compactness hypothesis on Za(f) in Theorem 2 is certainly verified if

f satisfies the following stronger Palaie-Sale condition

For any sequence (x ) C H such that f(x ) 4 C

(P.8) (for some C e R) and f'(x ) .0, there exists

a a convergent subsequence from (x ).

The functionals that we will consider in the sequel do satisfy this stronger version. 6

3. CRITICAL VALUES AND PERIODIC SOLUTIONS IN THE AUTONOMOUS CASE

In this section we construct critical values for the autonomous problem (1.5) and

study some of their properties. In particular, this construction will allow us to prove

the existence of free oscillations in (1.5) for any V e C I ,R) satisfying condition

(V). We start by setting the functional framework that we will use throughout the paper.

Without loss of generality we may assume by means of a scale change in time that

T - 2T. In the following, as is customary, 2W-periodic functions will be thought of as

defined on S * 3/215. Let E - (HI(S )) . E is endowed with the Hilbert norm

2 21 2w (1)li 2 f iI2 dt + I ixl 2 dt 11.

0 0

In order to keep notations simple, we henceforth will write HI (S ), L r(S I ) ... instead

I1I N r. IN 0of (H (S )) , (L CS1)) etc... Recall that E6-+ L (SI ) with a compact injection.

For x E, let

S2w2 2w
I*(x) - f IiI

2 dt - f V(x)dt
0 0

(1)Me recall that E is the space of 21-periodic functions x R N N such that

Ixi <-.

-10-



and

and) f 2v 2w 2 dt - f V(x)dt + f f x dt
2 0 0 0

Thu* solutions of (1.1) coincide with the critical points of I in Z, while the critical

points of 1* in 3 are the 2w-periodic solutions ("free oscillations") of the autonomous

system (1.5). We will also assume - without loss of generality - that V(0) - 0 so that

1(0) - I*(O) - 0.

We will now construct a sequence of critical values of 1* in 9 by a minifax type

principle on a finite dimensional approximation of E together with a limiting procedure

(Galerkin method). The spirit of this construction is to be compared with the work of

Rabinowitz [19] concerning superlinear elliptic partial differential equations.

The eigenvalues of x + - , in E are the numbers 0,1,...,-2.... (m e u). Let

35 denote the (2m + 1 )N - dimensional subspace of E spanned by the eigenfunctions

corresponding to the (m + 1) first eigenvalues. That is, i5 is the subspace of

truncated Fourier series defined by:
+m

(X e Is x(t) - a j a e CN, a_- .a -a j c a)

The group S acts naturally on functions of E by time translations. For

e e s (or equivalently, T e R/21Z) and x e E, we denote:

T x - x(* + T)

Clearly, the subspaces E" are left invariant by this action (TTEm - 3) and the

functional * is invariant:

1*(TTx) 1*(x) V x e E, V T e R/2w.

Notice however that, in general, I is not invariant under this action.

We recall that the group S1  acts on odd dimensional spheres. Let k e V* (-I\(0))

and identify R2k  Ck  so that

s2k-i - { e ck , 
r. 1'...* k 2 -

--i

-11-



212k-i
Then, for 9 e S and ~e S we write

- iil ir LT

2k- C 1 a C f - 1k

A mapping h : S * 
m  is said to be S -equivariant if

ho T TT oh V T e i/2u

Following the same construction as in (6], we define a family of mappings and one of

sets by letting, for m ; k + 1, m,k e N*t

Kk - (h : S2H
m -

2kl * ?\(0); h im continuous and s -equivariant)

Amk - (A C e\{0}) - h(S 2 1m2 kl), h e S :k

This family of sets allows one to construct critical values for I* on s3 by a mini-max

type principle. We define

(3.1) c k - sup mtn '*(x)

k

for all a, k e 0U, m) k + 1.

Some properties of these numbers are listed in the next propositions.

Proposition 3.1. Suppose V e CI (f ,R satisfies (V) and V(O) - 0. Than:

i) 0c 4 c m V+ vm, ke*, a;k+2

ii) For all k e a*, there exists P(k) and v(k) such that

:: 0 4 P(k) 4 m: 4 v(k) < + V a > k + 1.

ck

iii) Moreover, li P(k) - +,.

Proposition 3.2. For any k e 3* such that M(k) > 0, ck is a critical value if the

ka
restriction of I* to L". Furthermore, the limit of any convergent subsequence of cm

as m + +- is a critical value of I.

Before proving these propositions, let us observe that, as a corollary, one derives

from them the following result of Benci [7] and Rabinowitz (20, 23] concerning the periodic

solutions of the autonomous system (1.5).

-12-
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Theorem 3. suppose v e c 1(43) satisfies (V). Then, the autonomous system (1.5)

possesses at least one non-constant T-periodic solution for any T > 0.

Proof of Theorem 3. We actually derive here a slightly stronger version of this result.

We show that for any A ) 0, there exists a non-constant periodic solution x of (1.4)

such that Ixl . ) A. Indeed, let

L

ck - aM ck

By Propositions 3.1 and 3.2, 0 4 c k < d, and 1Lm c k 'im li(k) - +. Furthermore,
k-*+" k+

Ck  is a critical value of V' (as soon as u(k) > 0!.

Nov let X0 be a constant function, i.e. x0 e 90. Then

*(x 0 1) - -21 V(x0 ) 4 21b

for it follows from (1.2) that -V(x) 4 b, v x e 0N. Thus, V' is bounded from above

on 3e and therefore, for large k, ck corresponds to a non-constant periodic solution

of (1.5). Let xk denote a critical point of P' associated with ck: xk e z,

I'(.) - ck, (IC)(xk) - . We claim that Ixl (I +- + as k + + 0. Indeed, arguing by

way of contradiction let us assume that Ixk L" remains bounded along a subsequence.

Siac from the equation one derives that

2w jkjadt _ 2
J I.~~dt- Vm (xk) *x.2(dt0 0

it is straightforvard to see that 1e(x k ) would then also remain bounded. This being

impossible, the proof is thereby complete. a

We now turn to the proofs of the propositions.

Proof of proposition 3.1. This result parallels Proposition 3.3 in [6]. The proof of i)

which is quite simple (and identical to that in 16]) is omitted here. Let us prove ii).

Consider the functional

(3.2) -(x) 2 Iii - + 1
0 0

-13-



pr I.

(From now on, the masure dt is understcod in all integrals over (0,2w] . Define

(3.3) dZ - sup min (x)

AeA

By (1.2), one has

(3.4) c: 4 d + 2ub

We require the following intersection lea. It's proof is a straightforward

adaptation from [6, Lema 3.13 and will be omitted here. (It is a consequence from &

version of Borsukts theorem for the S
1
-actioni see [61) and the references therein).

lame 3.1. For any A e Sa one has A n gk+ *

Let us now show the existence of v(k) < - such that cC 4 (k), V a ) k + 1. Since

c: c:.,, it suffices to prove that for each k and a 0 Uk + 1, c is bounded from

above (by v(Nk)) independently of a. From Laema 3.1 it follows that

(3.5) min 3(x) 4 max J(x) , v e An

x@k 14k

k+1No, for x e , one has

22l M2 x (k + 1) 2 f 2 x12 •
0 0

Therefore,

(3.6) 3(x) 4 (k + f 2 Jxi
2 _ a 21 v x e c k+

2 0 0

Since the right hand side of (3.6) is obviously bounded from above independently of

x e zk+
1, we conclude, using (3.3) - (3.6) that

cR M v(k) < +w v km e u*, m o k + 1
kU

we now turn to the lower bound j(k) for the cm. We construct an explicit set

kk
U U sAeA in the sane way as in [6). incidentally, this will also show that AR whence

that the 0 are well defined. Let k - Nq- with q,1 e I, 0 - I < N. C is

identified to a subepace of C in the usual way. For 8- (p0e ., e C and

-14-



j e a, (01 . p. N e a+, e W2..... e = f2l), we denote
(ij 81 j ON
CiJ) " ( l ... e

Write s2N 2 k- 1 "as C -' q' .... I with ;jec for q+1 , (N,

Cq e Ci C e. and I I r.
2 - 1. We define a mapping h - S 

2N
&-2k

' l 
+ zm\0) by

q-q
setting:

(3.7) h(MC)t) 1 1 C(J),Jt 1 (-)

Let IF - I
m 

() (
q- 1

) The., h : S
2
Um-2k-1 *E\{0 C e\{0}. Indeed, one checks that

q 
2
%n

2
kf 2v12 q

for any y e h(S one has I - 1. Furthermore, h is continuous, and h
0

verifiess
jr ir I

h(e 0)(t) h()(t + ), V e 9 s , v t e a

(Just observe that (e iTB)
(

) - e () (J)). That is, h is equivariant under the S
I-

action. Thus, h e and Al * 6 : c is well defined.

Consider the mapping h() h- l Then, again z , S 
2 - 2k

-I .*0\{0)c \(o)h() I "q

L
is continuous. Since IT xl - Ixl . V T e 2/2 M, it is clear that h is

L L 2 2-

equivariant. Hence h eXm, and A - h(S
2  2k ',

) e A . For any x e A, one has

Nx - 1. To conclude, we require the following simple lema.

L

q11I
Lame 3.2. For any x e (zq-) , one has

lxi 1 1.I€

1IxE

Proof of Lame 3.2. Let x e (zq-1).I x has a Fourier series expansion

I a , a e c , aj -a 1

One has

-15-



2 22

L IiIAq

and

(3.8) IXI I Iaj•

Writing il I (IalIij) " 1, one derives from (3.8):

(3.9) lxi 4 C { I2i2?2 1 j1212

That is,

(3.10) Ixi L2Ar2 ,2 { '/2

L f2_1q

and the Lema follows.

We now conclude the proof of Proposition 3.1. Let A -h(). Then, by the

definition (3.1) of , one has

(3.11) Ck ; sin 1*(x)
2eA

Since A C(xe3 * Ix * 1tic , with s - (xe (zq - 1) i  Ixi 1), one derives
q L q q L

from (3.11)t

(3.12) ck ) nf O(x), V a o k + 1
xes

q

Hence, in particular, there exists for each k so e iq such that

(3.13) c: ) *(x k ) - I - p(k), V m ) k + 1

2W

We claim that l i m  p(k) i +. Tndeed, since Ix i 1, f V(xi) is bounded
k44mL 0 k

independently of k. By LAIma 3.2, on the other hand, one has

f' I k 2  
i(q - 1)

0

-16-
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21

When k* + one also has q -, whence J 2 1I - and I*()

The proof of Proposition 3.1 is thereby complete. a

Proof of Proposition 3.2. We only sketch the proof here as it is essentially classical.

To begin with. we observe that I* satisfies the following Palais-Smale condition:

For any sequence (x ) C Z such that

(P.S) 1*(x 4 C and (1*)'(x) + 0 in ',

then (x ) is relatively compact in Z.

Rare and thereafter, C denotes various positive constants. The restriction of I* to

1 10, satisfies the analogous property in Z&:

V(%) C 3 such that I(x n ) C C and

(P.S) (Ie )'(x) 0 in (m)', then

(x n  is relatively compact in E.

The proofs of these properties relying on condition V) are by now classical and we shall

not repeat them here. (See e.g. Rabinowitz [22] and Bahri-Berestycki [3, 61 for the

derivation of these properties in related situations).

That C is a critical value of I*|le as soon as (k) > 0 follows from the

definition of c and the property (P.8): for ,* One can indeed adapt the type of

argusent given e.g. in Rabinowitz (221 to the present framework. The only modification

which is required with respect to (221 concerns the "deformation lemma". Here one needs an

appropriate "deformation" in the space ka which, in addition to the usual properties, is

eguivariant under the St-action on Bo. The proof of this fact is but an adaptation from

the argument in [22] and is left to the readerm . A more general "equivariant deformation

leme" for the action of a compact Lie group is given in Benci (8] and could be used as

well here. Lastly, let us just remark that the hypothesis u(k) > 0 is imposed because a

set A in A k is required to be included in Em\{0). Thus, one has to construct the
k

If I* is of class c 2 , one does not require this equivariant deformation lemma
since one can work directly with the gradient flow of I* which indeed is equivariant.

-17-
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proper deformation of A which leaves 0 invariant. This is possible if one a priori
3

know. that ak ) 0.

Let k 6 EN be such that P(k) > 0. Since 0 < P(k) 4 -Z 4 v(k) ( +-, the sequence

possesses a convergent subsequence when * * +m. Let nj be a sequence of

integersa i A k + 1, such that m *4+* and ck j c k e I then,

0 V(k) < -. For a o smince m is a critical value of I* . there0 (k) ( c k •v)<+.Fo •-m _ snec k ~i

exists x • Z' with

(3.14) I'(x)-c k  (* )I(x n ) " 0

Let PM denote the orthogonal projection of 3 onto to, (a - aj). One then has:

(3.15) I 2 
2 

_ V(x) C C
20 0

and

(3.16) - P " Pv(x.)

multiplying (3.6) by xe and integrating yields:

2w 2v

(3.17) f Iim 2 - V.(x)-x
0 0

Using (V) it is straightforward to derive from (3.15) and (3.17) that
21 21 2W

2,j 1i3 , I V(x) and f V'(x.).x a are bounded independently of a - . Using
0 0 210 j,

(1.2), one derives that f IxnIp+1  in bounded too and so is Ix - . Therefore, one can
0

strike out from (x,) a further subsequence, denoted again by (x,) such that x* . x

weakly in 3, xm + x strongly in L , and P*(x,) + V'(x) strongly in L
2

whence

in 3'. Using (3.16) we conclude that x * x strongly in E. Clearly, x is a critical
m

point of I* and I'(x) - lim c k = ck . Thus, ck is a critical value of I*.

This completes the proof of Proposition 3.2. a

-18-



To conclude this section, we recall from [6] a topological property of the level sets

of 1 associated with the numbers . This property is the key to the perturbative

method for proving Theorem I which is developed in Section 6. Throughout the remaining of

the paper we use the following notations. Pot a functional # K * z t for a e a and

a e V, we denote (interchangeably):

()- )a] - {xe 21 +(x) ;a)

i"  - 4;(x) •a)

Theorem 4. Suppose that for some E 0 and some a, k e Cg, one has

Oc<a + c < € k - e. Then, for any set WC s m  such thatck-I I

one +has VD 1
ck-I ICk-9

one has

* 2ft-2k-I 0 MY 0, for some x0 e •

Proof of Theorem 4. As it is quite simple, we repeat here the argument from [6,

Theorem 31. We argue by contradiction and suppose that 2Nm-2ki (N,,) - 0. By the

definition of a there exists h s S 2 *M 2 k - l  3 n \(O) which is continuous,

a1-equivariant and such that

h(S 2 N v- 2 k I ) C [1 0 c - C

Since V2Nm.3 2k-1(W,-) - 0, there exists a hamotopy

U S [0,fIx 621M-2k-I

such that

U(O,r) - h(C) 2Na-2k-v r, e S2 1 n 2 '

U(1,) - 0

Write

S 2Nn-2k+i U ( (Ce)iS ) eCW-k, Pe R+ , e/210 IC12 + P2 - .

2M- 2k+ I ae,,8~2, d~ o=

Now define S 21m2k+ \ 0 by setting,

-19-
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I h(C) if p- 0, I 1 -

-(C•Pe
i  - TeU(P e-iO T C) if P 0' C *0

Tox if p-1. =0•

Then, it is easily checked that is continuous and s-equivariant. Since I* is

invariant under the S -action, the level sets of I* are invariant sets under this

action. Therefore, as u(t,c) e w c [I* c ,,, + ]m, one hasCk- 1

(3.18) R(S 
2W - 2 k + l  C [1* ) ca + C

(3.18 n i ,k-I

This implies in particular that 0 4 9(s2Nm-2k+t). Thus, e x and (3.18) reads:

win I*(x) ) CZ + C

xe(S2Nm2k+I k-i

which contradicts the very definition of k I  The proof of Theorem 4 is thereby

complete.

4. A DETAILED STUDY OF SOME AUTONOMOUS EQUATION

In order to apply the preceding theorem, it is crucial, as will be seen in Section 6,

to have a sharp estimate from below on the growth of the critical values ck as k + +w.

Such an estimate will be derived in the next section. Some preliminary results are first

required that we prove in the present section. They concern the precise description and

some qualitative properties of the solutions to some auxiliary autonomous equation.

Consider the problem:

(4.1) -Y = g(v) (v(t) e R)

where g : t + R is a given function. Throughout this section, g will be assumed tc

satisfy the following properties:

(4.2) g : £t R is of class CI, is odd and g(O) g'(0) 0

(4.3) g is increasing and convex on [0,+-)

-20-



t 1

(4.4) 0 ( G(t) - g(s)ds -( 0(t)t, V t 0 0 with 0 ( 80 <
0

Let - M
1
(S

1
)r here & consists of scalar functions (note that E &N). For

a e U, consider the subspace of truncated Fourier series:

{x e . x - I a eiit, a1 e c, a_ - , -M ( j mI

The next result provides a complete description of the set of 2w-periodic solutions of

(4.1).

Proposition 4.1. Suppose g satisfies (4.2)-(4.4). There exists a sequence of nontrivial

22-periodic solutions (u.K)k.. of (4.1) such that uk(O) - uk(
2

w) - 0. For each

k 6 V, uk is characterized by the properties that uk  has 2k-1 zeros in (0,2W)

(all the zeros of uk  are simple) and %(0) > 0. Furthermore, for any nontrivial

solution v of (4.1), there exist k e e and T e 9/2= such that v - TTk

Proof of Proposition 4.1. Consider the nonlinear Sturm-Liouville problem:

-9 -g(w) in (0,2')
(4.5)

(.5 w -w(21) - 0

It is known (see H. Berestycki (91) that (4.5) exactly possesses a sequence of pairs of

nontrivial solutions t1,f t2F,... .... ... For all J, w, is characterized by the

properties that wv(O) > 0 and wj has j- 1 zeros in (0,2v), all of which are simple

(nodes*). Furthermore, these ( e i together with w0 B 0 constitute all the

solutions of (4.5) (see (91). A simple integration by parts show that any solution w of

(4.5) satisfies (v'(2w)) - (w'0)) 2 
= 0, that is w'(2w) - ±w'(0). Hence, w iis a

periodic solution of (4.1) if and only if j is even: j - 2k, k e 06. We denote

uk  w '2k, V k e V. Then, for any k e x. and T e i/2W, TTUk  s a 2W-periodic

solution of (4.1). We claim that 0 and (TUI k e W, T e 8/215) are the only

2w-periodic solutions of (4.1).

-21-
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Indeed, let v be a non-constant 2w-periodic solution of (4.1)1 then v P 0. There

exists T e [0,2w] such that v(T) - 0. For if not, v would not change sign in

10,21]. But this is impossible since by integrating (4.1), one sees that v satisfies:

2w
f g(v) - 0
0

and g(v) has the sign of v. Now, let u - TTv; u is a 2W-periodic solution of (4.5)

and u 0 0. Hence, there exists k e N* such that u - I uk . As it is easily checked,

one has -uk = Tw.E* Therefore, either v - Ttu or v - T W k ,

The proof of Proposition 4.1 is thereby complete. a
z

Let G(z) f j g(s)ds and consider the functional associated with (4.1):
0

f 2W 2wG(v), ve
2 0 0

is a functional of class C2 on & and

21 21
<C"(v)h,h h f _ g,(v)h

0 0

(Recall that & - L). The critical points of * on & are the 21-periodic solutions of

(4.1). Thus, the critical values of the functional 4 on & are exactly the numbers

(4.6) Yk " O(uk)' k e V

(Notice that *(Truk) - *(uk) V T e R/212). our next result concerning (4.1) is an

asymptotic property of the sequence Yk as k + +-.

Proposition 4.2. The sequence of critical values of # satisfies the property

lim Yk/k
2

Furthermore, one has 0 1 < y2 ( ... .

Proof of Proposition 4.2. Let V k(t) = u k(t/k). Then vk is a 21-periodic function. It

is easily seen by symmetry properties that V(2w/k) - 0 and thus v is a solution of

-22-



'I - ~jg(Vk)
(4.7) VklO) - VklW) -0•

21 2w .2 21 2W

(Recall that q is odd). One, h f-2 .2 f,, 2 G( (k) I G(vk)"

Hence 
0 0 0 0

(4.8) 1k 22 .v

(4.7) yields:

2w 21
(4 .9) - 1 2 f g(vk)vk

0 k

Hence, one derives from (4.4), (4.6) and (4.9):

2 1 21 .2
(4.10) 1k/k ) f " I .

2v

We claim that f .2 4 as k + +0. Indeed, suppose by way of contradiction that
0

for a subsequence of indices k, Ik' 2 remains bounded. Then, IV I and consequently
kL k H1

IVk I remain bounded. Hence, there exists a constant C > 0, independent of k such

that 'g(Vk)1 4 ClvkI. By (4.9) this leads to

2W 21 2w
(4.11) <of 2 C4f . ( 4 9-- 2

0 Vk 0 V k k20

2 2
vhich is impossible for large k. Therefore, f V *+0 as k +, and from (4.10) it

0 Ic

follows that

(4.12) a y/I 
2 

- +* 2

k++W

-23-
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Let us now check that (yk keW is an increasing sequence. Actually, we are going to

derive a stronger property. Namely, that (Yk/k
2
}k.e in an increasing sequence of

positive numbers. For A > 0, let w X be the unique solution of

) " A . Ag(wX), w X) 0 in (0,')

(4.13) 1 wAO) - w Ai() - 0

It is proved in H. Berestycki (9) that w A exists and is unique. Moreover, owing to the a

priori estimate derived in [9] and which can easily be adapted to (4.13), one verifies that

A - w X is a C mapping from (0,+-) into H ((0,1)). (Notice that this a priori

estimate breaks down as A + 0). Let

1 1

e(A) " I 0/  f G-w2.
0 0

Then,

) ' V -" A g w1 ) - I" G(wA)
0 0 0 X

But since d-e H,((0,w)), one obtains from the equation (4.13):

A A f ,lw ) dw 0

0 0

Hence, using the fact that G(s) > 0 V s * 0, one has

(4.14) de(A) 0

That is, e(A) is decreasing with respect to A. Now, from (4.13) we derive the following

expression of e(A):

e(A) = A f fg (w )w1 - G(w )I
0

Whence, by (4.4) we see that e(A) > 0, V A > 0.

Using the same notation as for the proof of the first part of the proposition, we know

that vk is positive on (0,w) (as uk > 0 on (0,*/k)) and vk(0) = vk () - 0.

Therefore, from (4.7) it follows that vk is the solution of (4.13) corresponding to

- 1/k 2 
: v k  wk. 2 - Thus, by (4.8), one has

-24-
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-d.

(4.15) Y/k 2 
= 1 f2 - 2 G(v 2e(1/k

2

0 kO

Hence, by (4.14) we obtain that Yk/k
2  

is an increasing sequence of positive numbers.

This completes the proof of Proposition 4..

Remark 4.1. In the particular case g(s) - Isjq'ls with 1 < q < -, computations can be

made somewhat more explicit. Indeed, it is easy to see in this case that all the uk are

deduced from u1  by the transformation uk(t) - k2/(q-1) u(kt). It then follows that the

I2w 2-2l~ on 2vae h
critical values of the functional *(u) f u f -uIq

1  
on &are the

29+0 0 2w
numbers k "(u )(k) q-1 k e V with *(U ) I ) u 1 I* > 0. Since the

qY1+ f I

exponent of k in 
T
k may be made as close to 2 as one wishes, this example shows the

result of Proposition 4.2 to be optimal.

In order to use Theorem 2 in the next section, we now require a lower bound on the

maximal dimension of a subspace of &m on which the quadratic form h '- <" (v)hh> is

positive definite, when v - Truk. This is the purpose of the next results.

Proposition 4.3. For each critical point T uk  of #, there exists a subspace F of

(depending on T and k), P having codimension 2k + 1, and there exists C > 0 (c

depending on k) such that

<#$(TTuk)h,h>) ) 1hl
2
2  V h e F

L

Proof of Proposition 4.3. For a function q e L(0E,2w1), we let

u1 (q) < ... < i i(q) < ... denote the sequence of eigenvalues of the linear Sturm-

Liouville problem:

qw -M n(,2v
p (4.16) -w- 

L  
in (O,2w)

w(O) w(2W) - 0

-25-
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By a result of H. Berestycki (9), we know that the solution wj of (4.S) has the property

that
U j ( 9 1' w )) < 0 < Uj+ (g '(w ) .

Hence, in particular,

(4.17) 2klg'luk)) < 0 < t2k+1(g'(Uk))

Let (z i Je denote the sequence (depending on k) of normalized eigenfunctLons of (4.16)

associated with q -g(u k ) :

-ff j - q'(uk)zj - ~j(q'(uk))z in (0,21

(.) 1O) - z(21) - 0, z;(O) > O, IzIL2 - 1

Consider the space rk = span~zjI j 0 2k + 1). Then, F is a subspace of H0 ((0,2w))

having codimension 2k in H((0,21)). Furthermore, because of (4.17), one obviously has

(4.19) <#"(uk)h,h> ) 9kIhI 2  V h e Fk
L

whore "2k+I (g'(uk)) > 0. For any function v e %((0,2w)), one has

w(O) - w(21) - 0. Hence, one can identify Ho((0,21)) to a subspace of H1(1) - and

one has

- H ((0,2w)) e t

Therefore, Fk is a subspace of & of codimension 2k + 1.

Now, for T e 2/2UZ, let FkT - (TThI h eFk Tk Obviously, F, in a subsapce

of A having codimension 2k + 1. An easy calculation shows that F Fk, and

c a ck > 0 verify the desired properties in Proposition 4.3.

The proof of Proposition 4.3 is thereby complete. a

A straightforward corollary of Proposition 4.3 is the following:

Corollary 4.1. For any m,k e U', m ) k + 1, and for any T e R/21Z, there exists a

subepace F of &m (F depends on m,k and T) such that

dim F ) 2m -2k -I

and
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V2

OP (T Uk)hsh> ) C h12  V h e Fk L
2

for some t% > 0.

It just suffices to observe that if ; is the subspace given by Proposition 4.2, then

F ;r)& satisfies di P )d 2m - 2k - 1.

Remark 4.2. Define the coindex of a critical point v of # with respect to &0

coind(v, .,a , as the largest integer j such that there exists a subspace H C a,

having dimension j and such that

<#*(v)hbo > 0 V h e H\(o)

Then, proposition 4.3 reads,

a
coind(TT uk,$A ;0 2m - 2k - I . 5

All the critical points of # in a are given by the family

{Tcuk; k e 1, T e 9/213). However, the critical points of the restriction 9 of 9
law

to the subspace gn are different. Nevertheless, using the fact that the critical points

of w aroach the critical points of 9 in a when a w , we will now derive a

lower bound for the "coindexo of the critical points of

Proposition 4.4. Let k eP and let 6 e f e a number such that Yk <  Yk +1 . There

exists an integer %0 - % (6) e 9 such that for any a b Uo 6 is not a critical value

of • V Moreover, for any v e &a satisfying #(v) 4 6 and ($) ),(v) - 0, )m0 .

there exists a subspace 7 C is (F depends on v.s. 4) and there exists c > 0

(depending only on 6) such that

<#(v)hh> 2 V h
L

and

di F ) 2m - 2k - 1

Proof of Provosition 4.4. Let us first introduce some notations:

I () - (v e 21 '(v) - 0, #(v) C 6)
56(9 - ( e sm, (4.)'(v) 0, O() 6)
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For east A C E and a real a > O, we denotes

N (A) = (v e EI distance (vA) < a)
a

The proof is divided into five steps.

step 1- ( ) is a compact met in a. This is a consequence of the Palais-Smale

condition (P.S) satisfied by # on &.

Step 2. Let (va) c E be a sequence defined for a 30 1 such that v Z(). Then

(va) has a convergent subsequence which converges towards a point in Z (*). (This is but

a particular case of the proof given for Proposition 3.2 above).

Step 3. For any a > 0, there exists a 1 .a I (6 ,u) eu such that V a A air one has

Z' (#) C N (Z6 ()). This fact is obtained arguing indirectly and using Step 2.

Step 4. For any C > 0, there exists n > 0 such that for any v e N (Z6 ()), one has

for some u e za ():

(4.20) I<#"(v)h,h> - <#"(u)h,hIl 4 Ih1
2 

2 V h e &

L

This just follows from the C
2 

character of the functional # on & and from the fact

that Z (#) is compact.

Step 5. Conclusion: By proposition 4.3, there exists C > 0, and for any u e Z 6()

there exists a subspace Fu of a (Fu depending on u,6) such that Fu has

codimension 2k + 1 and

(4.21) <#"(u)h,h> ;o Ohl 
2  

V h e F•
L
2

Let c 1 - C/2 > 0 and let n > 0 be defined by Step 4. Lastly, let a0 - 'I(6,n) be

given by Step 3 (mo  only depends on 6). Then, for any u )m and any v e (#),

there exists u e z (o) such that (4.20) is verified. Whence it follows from (4.20) and

(4.21) that

<#"(v)h,h> ; 1 IhE
2  

V h e F n1 =
2 L2' uL

Z

Since dim P • 2m - 2k - 1, the proof of Proposition 4.4 is complete.
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To conclude this section, we consider now a functional 9 defined on Z -& N  by

Cx) N 1 2w 2

!0 0

N
for any x - (xI......xN) : R ,x 8 , and where W(x) - X G(xi). We denote here

i-i

again

z (0) ( (x e z *'(x) - 0, (x) ( 8}

and

z - Nx e Em, (4 )'(x) - 0, OCx) 4 6)

From the above propositions, we obtain the following result for 0.

Proposition 4.5. The critical values of 0 on 5 are the numbers

S.. + + ... + Y k N for any combination of integers ,..... ", where

Yk is the kt
h 

critical value of # on & (see (4.6)). Let 6 e R be a regular value

of 0. Define the integer L(6) to be the largest sum k 1 + ... + kN among the N-uples

k I .....kV 6 3 which satisfy Ok..... N 
< 

6. Then, there exists M0 - m0 (6) e n such

that V a 0 MO, 6 is not a critical value of the restriction 0 . Moreover, for any

x 6 Z(0) with a ) s0 there exists a subspace F of Em (F depending on x, m and

6) such that

<#-(x)h,h> > 0 V h e F\{O}

and

dim F ) 2Nm - 2L( 6) - N

Proof of Proposition 4.5. For any x - (x ,...,xN) e B and h (hl...,hN) 8 E, one has

N
(4.22) '(x)h - # *'(x )hi

i-I

N
(4.23) <#"(x)h,h> " M "(X)h,hi. 3.

i-2

-29-



Hence, *'(x) - 0 is equivalent to #'(x) - 0, V ± - 1,...,N. Thus, the critical values

of * are the numbers Of ..... k N .k I .+ + ykW . Let (elI....,e N  denote the

canonical basis of VH
. 

Since 
m  

&% 1 0 ... 0 me N ' it is also easily verified that

(4.24) (0 )s(x) - 0 - (0e ) ' ( , 1 o, V i -1,...,N.

Let x e 3 be a critical point of 0. Then, we know that x - (T Tl', ...,T T )..

for some T IO.,T N e /212 and kl,...,k v  N. By proposition 4.3, we know that there

exist N eubspaces of &, i' ..,p'N . with Fj having codimension 2k + 1 in &, and

there existes > 0 such that

(4.25) C(TT uk )h,h > Ih 11 2  
V h •

Moreover, an inspection of the proof of Proposition 4.3 shows at once that C can be

chosen independently of kj provided each k, is bounded from above by some k e I C

then only depends on k. Let us assume henceforth that 'k kN ( S. Then, for each

ki one has k 4 L(6), and therefore, e can be chosen to only depend on 6. Let

r - r I a 1 ... 0 FNON; F is a subspace of Z having codimension 2(k + ... + kn) + M,

and F depends on x and 6. By (4.23) and (4.25). one has

2
(4.26) <00(x)h,h> 3 Clhi 2' V h e F

L
z

Now, to conclude the proof of Proposition 4.5 it just suffices to repeat the steps 1

to S in the proof of Proposition 4.4. Firstly, it is straightforward to check that 0

satisfies the Palais-Smale condition (P.8) in I. Therefore, Z6 (0) is compact and one

shows that 3m 0 - mo6) e such that for a • a0 , 6 is not a critical value of 0,e .

Using the facts that Z (0) is compact and # is of class C
2 

on E, one proves that

there exists n ) 0 such that for any y e N n(Z 6(0)) one can find x e za () such that

(4.27) 1(<0(y)h,h) - <#"(x)h,h>) 4- 2 1
h
12 V he
L

2

Lastly, following the same type of argument as the one used for Proposition 3.2 one shows

that if m0(6) 6 0 is large enough, then one has
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U.

(4.28) () c n(z()), v 0 so

The proof of Proposition 4.5 in completed by combining the inequalities (4.26) and

6(4.27). These show that for any a ; s0  and for any y@ 2%(#) there exists a subepace

7 of ze such that

((y)h~h) )- 0 V h e F\(O)

and

dim • ) Me - 2(kI + ... + kU) - 9 ),M- 2,(S) - N

5. AN STNhTR ftM 3W ON 3MI GROWH or THE CRITICRL VALUZS

The results of the preceding sections will enable us to derive here a sharp estimate

from below on the growth of the critical values of I* constructed in Section 3. The main

result of this section is the following.

Theorem 5. Suppose V e c (ilI) satisfies condition V). Let c be the critical

values of I* defined by (3.1) and let - h a c:, (0 C k < -). There exists a

subsequene ck (i * +( as i * +) such that

2
1km c A . +m
ki*e hk i i

In the proof of this Theorem, we require the following technical le ma.

Lema 5.1. Let V e C0 (aI1 it) be an arbitrarily given function. There exists a function

G e C (t,i) having the following properties

(5.1) GI - g is odd

(5.2) G(0) - g(0) - q'(0) - 0

(5.3) g is increasing and convex on 10,+-)

(5.4) 0 < G(s) C g(4)s, V s 6 a, s 0 0

N

(5.5) V(x) I (xj) + c V x- (x 1 ... ,x%) e
i-I

where C is a constant.
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Proof of Lesma 5.1. Set

% max V(x)
n~ Ixl'n

Choose a sequence of positive numbers a~a.... aa, such that an > 0 V n e 6, and

a0 > m

a0 + a > Is
0 1 2

n
i ai M n+1i-1

Define for r e a, r o o0:

g1 (r) - 3 alr [( + 1)+ 2

n-I

where c stands for max(c,0). Observe that g, is a finite sum for any r e a+.

Clearly, g1 6 C
l
(R

+ , t
R) and

r
G(r) f gl(s)ds

0

verifies G (0) " g1(0) - g;(0) - 0. Moreover, gl is increasing and strictly convex on

[0,4-) and one has

GClr) - I a nr - n + 1)+] -C a[(r - n + 1)+ 2r -r, V r • 0
n-I n-i

Lastly, one has

(5.6) a + G,(n) )a +a + ... + mn+

Now define for r ) 0.

g(r) - A g I (hr r)

r
G(r) - f g(s)ds - l ir)

0

For r e R, r C 0, set g(-r) - -g(r) and G(r) - G(-r). It is obvious to check that

G satisfies properties (5.1)-(5.4). Let x e R? and let n e K be such that

n 4 lxl n + 1. Hence, V(x) 4 mn+1 and there exists j e (1,...,I} such that
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ri Ix 1 ) n. Therefore, since G 2 0 and G is increasing on R+ we obtain:
N

a0 + I G(xi) a0 + G(x - a 0 GI ( & Ix1 1)  a° 
+ G (n)

Hence, using (5.6), we derive:

N
a0 + [ G(xi) ) V(x) V x - (xl .xN) e

i-I

that is, property (5.5). This concludes the proof of Lema, 5.1. a

Proof of Theorem 5. We use here the notations of Sections 3 and 4. Let G be the

function given by Lomma 5.1. Define

21 2w

,;2 f G(v) vvea
o 0

and

OW # 1i f2w 1; 2 2 W*(x) = [ e~ 1  - - I f ' 2 - 21 w ~c) ,
i-1 0 0

N
for x - (x %e...,XN) 9 3, where W(x) - G(x ). For m,k e V*, a ; k + 1, define

i-I-

b sup in *(x)
k ea XeA
Kek

and

Since - 21a0 4 1* (by (5.5)), one has

(5.7) bk -2 , 0  ck , V m,lr e N', i A k + 1

and

(5.8) bk - 2we 0 4 c. , V k e V

Thus, to establish Theorem 5, it suffices to show that there exists a subsequence b k

of (bk) (kI * +. as i + +i) such that

(5.9) im bk / k  -
k 

i
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The functional 0 is a particular case of the class of functionals studied in Sectlon

2 1
3. indeed, w e C (R R) and W verifies condition (V) (with e - 1). Hence, all th.

results of Section 3 apply to 0, and we know that

(5.10) Liu b - +

k+w

(5.11) (bk+ V k e

(5.12) bk  is a critical value of # V k e N*

(Notice that 0 is a critical value of 0 since ##(0) - 0). We also recall that Theorem

3 applies here with l* and ck  replaced by 0 and b respectively.
kk

By (5.12) and Proposition 4.5, we know that for any k e a, there exist N integers

e a such that

b k" B .... =j Y * +J2 + ... + Y '

where the yj, j e M, are defined in (4.6). By (5.10) and (5.11), there exists a

subsequence bki of (bk)f with ki + +- as i + +-, such that

(5.13) bki-l < bk, V i e .

We claim that (5.13) implies (5.9). This fact rests on the following lemma.

Lemma 5.2. For any k e N, k > 2 such that b < bk, there exists Jl,...,j ek-I k

with J 
+  

"
+  

+ N • k, and y +y + k
I N N bJN

Proof of Lemma 5.2. We argue by contradiction and suppose that for any 0l,. ..,N < bk,

one has jl + .. 
+ 

JN 
< 

k - N. There exists 6 e R, bk_ 1 < 6 < bk  such that [6,bk)

does not contain any critical value of 0. As in Proposition 4.5, define L( 6) to be the

largest sum jl + + JN among the N-uples of integers jI,....JN e 8 subject to the

constraint B 6. Then, one has

(5.14) 2L(6) + N < 2k - N < 2k
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By Proposition 4.5, ye know that there exists .0 - .0(6) e 3P such that 6 is not a

critical value of 0 a for any a p so, Furthermore, for any a N So and for any

x e ZmM9 - [x e el (0IS )'(X) - 0, 9(x) 4 8), there exists a subspace F,, of '

(F, depends on x,m and 6) such that

(5.1) dinr F ) Us- 2W 6) - N

and

(5.16) (,u'xh,h), > 0 V h e Fr \(0)

Lastly, from the proof of Proposition 4.5 it is straightforward to derive that Z ( 0) is

compact.

L Hence, we are now in a position to apply Theorem 2 of Section 2 to obtain, using

(5.15)2

(5.17) 1 1 4)'6,P) -0, V A6 e* W. I < On - 2M 6) - V) - 1, V p e 1,

By (5.14) we have 2M~ 2k - I < (21ft - 2L(G) - N) - 1. Therefore, (5.17) yields

(5.18) V r k (06P 0, WK )00 Vpe1*'1

on the other hand, there exists an a e U* large enough, with a 30ao, and such that

(5.19) b m <b m .
k-i k

Then, by Theorem 3 of Section 3, the inequalities (5.*19) imply:

(5.20) W 2Um-2k-1 ((#16,p) *

for some p6 (01';

The contradiction between (5.18) and (5.20) completes the proof of LeMA 5.2. a

Conclusion of the proof of Theorem S. A consequence of Leaea 5.2 is that for any

k e K, k ?,2N, such that b < b ,there exists j e with j )--k andk-1 k '2

I. y < bk . (indeed, the 'a are positive, and If j I +..+jN) - H, at least one

Ji verif ies j ;0 L k).I 2
How let (ki) be the subsequence satisfying (5.13) (ki +ft). Then, for any ki,

there exists je n such that

(5.21) Tj t (P!
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Hence, J, * + as 1 * 4. From (5.21) we derive

(5.22) bki/k • I y i/l /0 1± (211) J

Therefore. by Proposition 4.2, we derive from (5.22)s

li. bk Ak
2

k £ +

The proof of Theorem 5 is thereby complete. *

Remark 5.1. If one assumes V to have polynomial growth, that is V(x) a'JxIq+  + b'

for some a',b' > 0 and q > 1, then the above estimate can be somewhat sharpened. As is

clear from the proof above, one can show in this case, using Remark 4.1 that for a

subsequence Ck , one has
k

Cki ) i (k ) q-1

where v ) 0 is same constant. This result will be used in Section 7. U

Remark 5.2. We conjecture that one actually has im c k/k - + for the whole sequence
kak.k

(ck)k . The estimate of Theorem 5 was derived here using some deep topological

properties associated with the numbers ck . It would be interesting to know if one can

derive this estimate (or a stronger version) in a purely analytical fashion. Lastly,

another open problem is to know whether one can achieve a more precise understanding of the

relationship between the integers k e N and JI,".. "JN e N which satisfy

b - , We emphasize the fact that even in the simple case N - I and
k 1 +

V(x) - lxq+  (q > 1), such a relation or such a stronger estimate for the wholeqe +

sequence bk are not yet known.

Theorem 5 will be used in the next section through its following corollary.

Lema 5.3. Let V e C I(RNR) satisfy condition (V). Let A > 0, k > 0, 01,02 > 0 be

arbitrarily given positive numbers and let p > I be given. There exist k e NS, k ) 2

anda sequence (m) C *, mi + as j + - such that k 30K and for mr m the

following holds
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lim c J3 c- 

A m <
Ck- 1 

<
k

and

c Isr a- in i e c j m ), a (c ) 
1/ (p + 1 

) + 02k Ck-1 I k k

Prof f TN"5.. Lt 1; m ,¥ k e !1". It clearly suffices to show that there

Proofof Lerns .3. Lt c -rn c.+

ck M++m C

exists k e 9, k )o 2 such that k ), K with

Ck-1 u (k k ) > A

and

(5.23) c - C > (C)/( + 02

We claim that (5.23) holds for an infinite sequence of indices k e . (This is enough to

conclude since l. (k) +). We argue by contradiction and suppose that

(5.24) c k - C k_1 C aIlc k ) /lp+1) + 02 , 9 k k 0

for so"e k 0 e IN*
. 

Using a slight modifi1cation of Lemma 5.O in (3) (or Lemma 7.5 in [6) ),

it is straightforward to show that (5.24) implies

(5.25) ck - a k 
(P I )/p + 0, -V k-C N*

for soue constants ) 0, Since p > 1, (p + 1)/p < 2 and (5.25) yields

5 ) C k/k 0 V
lira / 2

k++"D

But this is impossible as it would contradict the result in Theorem 5. The pr'oof of the

lemma is thereby complete.
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6. XXISTMC OF FORMD OSCILLATIONS

Using the results of the previous sections we will now prove Theorem 1. Recall that

I is the functional defined by

'2' I  21 2'

I(x) - 2 1;i2 - f V(X) + f Tfx x e ,
20 0 0

The critical points of I in B are the 2w-periodic solutions of the system

(1.1) 1( + V'(x) - f(t)

We start by a truncation procedure on the functional 1.

Let X s R+ * t+ be a C function with the following properties:

X(s) - 1 , V s e t0,1]

X(S) " 0 , V s 2,

X'(0) I 0 , V s e +

For p ) 1, set XP(a) - X(s/p). Thus, X verifies

16.1) e c(,+), P C I , x 0 on

(6.2) P(s) - 1 V a 6 [0,p] and Xp (s) - 0 V s ) 2p

(6.3) IX,(s).sI ,B V s • 0

where B > 0 is a constant. Lastly, we set

21(6.4) X Wx - P(o j xlp+,) V x e E

where p is the exponent appearing in (1.2). (E.g. p + 1 = 1/e with 0 given by

condition (V) is admissible in (1.2)).

For p P 1, we define

2w 2w 2w
I (x) 1 ; 1 - f V(x) + X (x) f fex

2 0 0 0

Thus, if IxI1l ( p, one has 1 = I in an LP+1-neighborhood of x in E, while if
LP+I

IxI
p 1  

> 2p, then I . 1* in an L
P+

' neighbcLhood of x in E.

We require the next three technical lemmas.

Lama 6.1. liI(x) - I (x) 4 V /(p+l) v x e z, where u > 0 is a constant.
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Proof of Lema 6.1. One has

1I*(x) - Ip x) P 1 4 C XP(X) IX lL P 1 I

The lemma follows from the fact that x0 (x) = 0 as soon an m x1 P+1 V (2p) a
1 1 e

Lemia 6.2. For any p ) 1, 1P satisfies the Palais-Smale condition:

(P.8) For any sequence (xj) C a such that I (x j ) is bounded from above and

(1 1 )I(x ) + 0 strongly in S', then (xj) is relatively compact in E.

Furthermore, I Ps satisfies the analogous property in gE for all a e 96. Lastly,

I verifies the condition.
P

For any sequence (xa) c 2 such that x 0 6 , (I )'(x)0 and such that

(P.S)* I x) is bounded from above, there exists a convergent subsequence from

which converges to a critical point of I •

The proof of Lemma 6.2 is essentially classical. It uses property (6.3) and it relies on

arguments that have already been called previously in this paper. It is also

straightforward to adapt the Appendix in [6) to the present framework to derive this

lemma. Lastly, one could also adapt the estimates in the proof of the next lemma in order

to obtain Lemma 6.2. We therefore omit the details here.

Lemma 6.3. There exist two constants a > 0 and 0 > 0 such that for any p - 1 one has

the following property. if x e I verifies (I )'(x) = 0 and I (x) 4 ap - B. then

Ix
P+ 1  4 p - 1 and consequently, 1. . I in a neighborhood of x in E.

Proof of Lemma 6.3. (Z )'(x) - 0 reads

2W
(6.5) 9 + V'(x) - X9(X) f +X'(X) f f'X

0

where

X (x) = (p + 1) x( xl+') IxPIxP LpL+1
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Hence

<X (X),2 30 (p + ) X(IXI 1 IX

Lp 1  L1*I

Therefore, by (6.3) one has

(6.6) I<X'(x),x>) 91 - (p + 1).

multiplying (6.5) by x and integrating yields:

2v11 2w
(6 .7 ) I f 1; 1 _ f v Ilx ) l -x1 t ex tI 9 +

0 0 L 1
'

where we have used (6.6), (6.1) and where C > 0 denotes a constant - as it continues to

do generically in the sequel.

Now, in addition to (6.5) suppose that one has

(6.8) p(x) • A

for some A > 0. Then, using (6.7), (6.8) and condition (V) one derives

21

(6.9) f V(x) C CA + C + CIxI
0

sling (1.2), one obtains from (6.9) that

(6.10) 2" IxI ( CA + C'.

0

Let us choose a,0 > 0 in such a way that Cac I and -CB + C' 4 -1, where C and

C' are the positive constants displayed in (6.10). We have thus shown that (I P)(x) = 0

and I (x) C ap - $ together imply the estimate Ix
+1

e - P - I Notice that a and
pp+ "

do not depend on p. s

We also require the next corollary:

Lemma 6.4. Let a and B be the constants of Lesma 6.3. For any p o 1, there exists

mo(p) e N* such that for any m P m0(p) one has the following property: If x e 9

verifies (I P ,,)'(x) - 0 and I,(x) 4 ap - B, then I = I in a neighborhood of x

in 3*
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This follows easily from Lemas 6.3 and 6.4. a

To prove Theorem 1, we will now show that I has a sequence of critical values which

is unbounded from above. We argue by contradiction and suppose that the critical values

of I are bounded from above. That is, we make the following assumption.

{ There exists A C R such that I
(6.11)

has no critical values in [A,+-).

Then, by Lema 6.2 (condition (P.S)), the set of critical points of I, Z(I) is

compact. For any functional F e CI (,R), we continue to denote

Z(F) - (X e Z ,(x) - 0, F(x) 4 6)

Z() - Ix e z; ( x - 0, F(x) 4 8)

From (6.11) and Lownms 6.2 and 6.4 we know that by choosing m0 (p) large enough one has

(6.12) z QP'0(I P) C Nn(Z()), V p 3 1, V a ; n0 (P)

where, as usual, NI (M(I)) - (x e Eu distance (x,Z(l)) < ) and where Ti> 0 is some

fixed positive number (e.g. n = 1). Since E 3- Lm, we derive from (6.12) that

3 C ) 0 such that 1xl w C for any
L

(6.13)

x e z (I ) and for any m ) VOP), V P01.

In (6.13), C is independent of p and m. Since V e C2 (3t,R), one obtains

(6.14) IV"(x)l 4 (C, V x e z- (I P, P 1, V a • nO(P)
L

The estimate (6.14) yields a lower bound on the coindex of the critical points of

1P. Indeed, let 6 5 be a fixed integer such that j 2 C (C in the constant in

(6.14). One has

2,j12 2w

(I"(x)h,h) f 2 1412 f V(x)h-h
0 0
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Hence, for any he B JO \(O) and for any x e Hm satisfying IV(x) I C, one

L

has

(6.15) <1'(x)h,h> • 1(j 0 + 1)2 _ cf 
2 h 2 > 0

0

By Lemma 6.4, we know that if x e z )- and m ) 0 (p), then I = I insa
a 0

neighborhood of x. Therefore,

(6.16) <i;(x)h,h> - <10(x)h,h> V h e Z•

We am up (6.14) - (6.16) in the following relation:

<I"(x)h,h > 0, V h e Z a (zO) I \0)

(6.17)

V xezdrZ,), Z. a (I(p), V 6e [A, ap- 9

(indeed, observe that by (6.11) and Lemmas 6.2 - 6.4, one has

(I -s(I) Z (I) C for any e [A,op - 0) and any n -0 (),

We can now apply Theorem 2 (see Section 2). Let p 0 be defined by coo0 - -A. By

assumption (6.11) and Lemas 6.2-6.3 we know that if p o p0, [A, p- 9] does not contain

any critical value of I p or of I SM provided m ) a0(p). The relation (6.17) shows

that for any x e ZaPs 0 (I ) there exists a 2N(a - J0 )-dimensional subspace of on
a p

which I * is positive definite. By Theorem 2 this implies:

Sw((I]) - 0, v I e 3, f 4 2N(m - J - 2

(.~1 Pt0 ' v a 0 0 (p), v 6e [A,GP- 0]

We will now show that (6.18) to which (6.11) led is untenable. Firstly, in view of

Lemma 6.1 notice that one has

(6.19 D (I Ia1 1*1 (1
m

(6.19) bl)b b3

as soon as

(6.20) b2 3 b1 + up
1/ (p + 1) and b3 0 b2 + go 1/ 1P+ 1

(where Pm > 0 is the constant given by Lama 6.1). By Lemma 5.3, there exist I s e3* and

a sequence (a) C IP, mi + +0 such that for all m -m the following hold:

(6.21) k • NJ0 + I

-42-



(6.22) lm k - M k

(6.23) 0, aC Co- C co

(6.24) a ) ,(ca),/PI+
-c1k- 1 C 021

for all a - mi, where o1,D2 > 0 are arbitrarily fixed positive numbers.

We precisely choose c1 #*2  in such a way that one has

Sa(P) + q2 z 2(1-- + +)/(p4 ) 2 ,

for any a ) 0, whore aO are given by Laema 6.3 and m > 0 is the constant in Lmma

6.1. Inequality (6.24) then leads to

(6.25) 
0
k - C 2k I (o 2u .)1/(3*1} 2.

e k +  
•

Let P -We now fix a largo enough so that a ) -0 -C c and
SaCk

(6.26) - 0 2 I1 /P ( + I-~~C c k .1 ) .,

not

(6.27) a + + 1 i l/(pl)

Then, by (6.26) one obtains
a I I /(p 1)

(6.28) 0k - P .

By Lomma 6.1 (compare with (6.19)-(6.20)) we have:

16.29) ji ~ . 1  i,~ 81 m x c -I'('-") [*'•o~k-, + 12" X ,•," [,,o
whence, by Theorem 4 (Section 3) one derives from (6.29) that

(6.30) .2NA-2k-1 (Ip ) a]'.) * 0

for Same point w e [11J) -I x' 1 61
m
. Observe now that

c. * <6(c -C k  ap-
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and that m ) m0 (p). We have thus reached in (6.30) a contradiction to (6.18) for by

(6.21) one knows that

2um - 2k - 1 4 22(3 - jO) - 3

Thus, the assumption (6.11) is absurd and the proof of Theorem 1 is thereby complete.

Remark 6.1. In the preceding argument the assumption that V was C2 played a crucial

role in obtaining the bound (6.14), which allowed us to invoke Theorem 2. We would like to

emphasize that a simpler argument allows one to prove the existence of at least one forced

vibration of (1.1) (for any given periodic f) under the assumption that V 6 CI(3R).

Indeed, the above proof shows that (6.29), whence (6.30). hold for at least one k 6 1 and

for an infinite sequence of m - mj * + . ow suppose that (1.1) has no solutions at

all. Then, I Pie has no critical values in (--,61 for a fixed a - mj large enough.

By Le 2.1 then, the set (P is a deformation retract of the whole space Sm . This

implies wt(IM]a) - 0, V I e 9- which is a contradiction to (6.30).

Remark 6.2. It is easy to check that the contradiction of assumption (6.11) actually gives

the following slightly stronger results There exists a sequence ()xk kf of 2v-periodic

solutions of (1.1) such that list Ixhl * - + Note that NXYlIo is the amplitude of a

2w-periodic solution. a

7. MORE CZWMRAL FORCED SYST S

in this section, we consider the more general non-autonomous system

(1.3) 9 + V'(t,x) - 0

Here again, we are interested in the existence of T-periodic solutions x(t) 6 1? for

(1.3). We assume that V satisfies

(7.1) e• C2(2 . tR) and V(t,x) is T-periodic in t

0 < V(t,x) 4 SVx(tx)*x V x 6 RN ,  I ) R0

(7.2) j
where 0 e (0,1/2) .

(7.1)-(7.2) imply the existence of positive constants y,6 ) 0 such that
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(7.3) Y1rxi p  - 6 4 V(t,x) v(t,x) e a x am

where p 1 - 1/0 > 2. Thus V is superquadratic in x.
(1 )

The results and methods of the previous sections allow us to show the following result

for (1.3).

Theorem 6. Let V e C2(t x 3 ,R) verify (7.1) and (7.2). suppose that there exists a

function V e C2 (3,R) satisfying condition V) and such that

(7.4) I;(t,x) - V(x)I r. C + CIxIa  V t e a, v x e R,

where C > 0 Is a constant and a > 0. If a is such that a 4 2 ye then,

problem (1.3) possesses infinitely many T-periodic solutions.

Remark 7.1. p + 1 is the exponent appearing in the relation (1.2) satisfied by V. Note

that from (V) one can choose p + 1 - 1/e. The number 0 e (0,1/2) is the same in

V) and in (7.2). a

Remark 7.2. (1.1) is a particular case of system (1.3) corresponding to

;(t,x) - V(x) - f(t).x. Since a - I is always admissible in Theorem 6, one sees that

(for f 6 L ) Theorem 6 is an extension of Theorem 1.

Sketch of the proof of Theorem 6. Since the proof follows exactly the same ideas as the

one we have developed above for Theorem 1, we just mention here the general outline and

some estimates.

As before, we fix T = 2v and observe that the 2w-periodic solutions of (1.3) are the

critical points in 2 of the functional

21 2w.
J(x)

0 0

("The existence of subharmonics (that is kT periodic solutions of (1.3) with k e U')

has been studied by P. H. Rabinowitz [21] for certain classes of Hamiltonian systems,
different from the ones considered here. (For instance, in the case of (1.2) where
V(t,x) m V(x) - f(t)*x, the hypotheses in J211 would imply f 1 0). For a subquadratic
V, the existence of subharmonics in (1.3) has also been proved by P. Clarke and I.
Ekeland 127).
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For PI. 1 set

1 21 2 2w. 2T
JWCx) -- f (x)0 f V(t,x) - (I - x x) f v(x)
p 2 0 P 0 P 0

where, as in Section 6, XP(x) stands for

S2T

xP(x) - XPo Ixl"* ' )

p0

and y X verify (6.1)-(6.4).

The proof of Theorem 6 rests on the following estimates which parallel Iemaa 6.1-6.4.

Lamem 7.1. Under assumption (7.4), for a 4 p + 1, one has I3 x) - T*(x) I ( 11 (

V x e 2, V p ) 1 where p > 0 is a constant.

Lama 7.2. 1iP and JP In a verify the Palais-Smale condition in Z and So

respectively. Moreover, 3 satisfies the condition (P.S)*.

Lama 7.3. There exist two constants aj > 0 such that for any p ) 1 one has the

following property. If x e 9 verifies (JP )(x) - 0 and J P(x) aop - 6, then

IxP
1 

4 p - 1 and consequently, 31 - 3 in a neighborhood of x in 3. Furthermore,

Loamm 6.4 holds with I and I replaced by 3 and J respectively.
p p

The proofs of these lemmas follow very closely a priori estimates already derived in

this paper (see in particular Lemmas 6.1-6.4). We therefore do not repeat them here. a

From Lemma 7.1 it follows that

provided a ) d + i p 
/ (L+ l ) 

and d' )i + V p 0/(P + l ). 
Let ck be the critical values

of P' defined by (3.1). Using the same method of proof as in Section 6, one can find a

number ak such that c_ + nd
2- ak e'ck -2an

(7.5) [z 3 ck 1-  + 1-L :) a o m 
, [" a -

for infinitely many indices m, if one has

(7.6) ck -c k 1 ) 2I Ia
/ (P + I ) 

+ 2
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how, in view of Lema 7.2, one furthermore require@ that p. k be chosen in such a way

that

(7.7) ck I OP ,

thereby insuring that ak ( o - B. The inequalities (7.6) and (7.7) are compatible (that

is, one can find a p ) 1 satisfying both) provided ck_1 and ck verify

(7.8) a, c a/kp+
'k - ck I  k + 02

for some appropriate constants a)1'o2 > 0.

Thus, for any k e 8 such that (7.8) holds, there exists p > I and ak < up - B

for which the inclusions (7.5) are valid for infinitely many indices a. By Theorem 4,

this implies

(7 .9 ) W 2 Wm 2k l ( I [ P ). k ]a

We have seen in the preceding section that by Theorem 1, one derives from the fact that

(7.9) holds for infinitely many indices k that J possesases a sequence of critical

values which is unbounded from above. (This is obtained via an argument by contradiction).

Therefore, to prove Theorem 6, it suffices to show that (7.8) holds for infinitely

many indices k. By way of contradiction suppose that

(7.10) 0kcp

for any k ) kO . Then, by Lem& 5.1 in [3) on LeAa 7.5 in (61, there exists a constant

N > 0 such that

(7.11) ck  M k p
' , V k ; 1.

By Theorem 5 (Section 5) there exists a sequence (k i) C WO, ki . such that

(7.12) lin ck/k2 +2 .

k 4+o i
i

Thus, one readily sees that (7.10) is impossible if (p + 1)(p + I - Q
-  2, that is if

a 4 1 " Hence, in this case, (7.8) holds for infinitely many indices k and the proof
2

of Theorem 6 is complete. U

As we have seen in Section 5, estimates on the growth of c. sharper than (7.11) can

be achieved under additional assumptions on V. Nor* precisely, suppose V verifies
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(7.13) alxl 4 1 - b ( v(x) 4 a'IxIq+ l + b', V x I

with a,ba',b' > 0 being constants and 1 < p 4 q -*. Than, we know (compare Remark

5.1) that there exists a sequence (ki) C N, ki 4+ and a constant v ) 0 such that

(7.14)cki ) V k Lq-1

In this situation, (7.11) (which comes from contradicting (7.8)) is impossible provided

(7.15) +  
< 2 '3 +_p+l -a g-1

(y + 1)(a + 3)

thatis, a 2(q + 1)

We thus have shown:

Theorem 7. Let V and V verify the assumptions of Theorem 6. Suppose moreover that

V satisfies (7.13). Then, the conclusion of Theorem 6 holds with a C( +  ) + . In
2(q+ 1)

particular, if p - q in (7.13), then the conclusion holds with a < 2.+ .

Remark 7.3. The preceding results lead quite naturally to an open problem: It is tempting

to conjecture that (1.3) possesses infinitely many T-periodic solutions provided V only

satisfies (7.1) and (7.2).
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